Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 39

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with Multi-physics modeling (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Waseda University*

JAEA-Review 2022-054, 150 Pages, 2023/02

JAEA-Review-2022-054.pdf:7.26MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (hereafter referred to "1F"). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with multi-physics modeling" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. Continuous update on understanding of the damaged 1F reactors is important for safe and efficient decommissioning of the reactors. This study aimed to estimate the in-depth debris status of the damaged 1F Unit-2 and Unit-3 through multi-physics modeling, which comprises of MPS method, simulated molten debris relocation experiment and high-temperature melt property data acquisition in the three-year project from FY2019.

JAEA Reports

Improvement of model for cesium chemisorption onto stainless steel in severe accident analysis code SAMPSON (Joint research)

Miwa, Shuhei; Karasawa, Hidetoshi; Nakajima, Kunihisa; Kino, Chiaki*; Suzuki, Eriko; Imoto, Jumpei

JAEA-Data/Code 2021-022, 32 Pages, 2023/01

JAEA-Data-Code-2021-022.pdf:1.41MB
JAEA-Data-Code-2021-022(errata).pdf:0.17MB

The improved model for cesium (Cs) chemisorption onto stainless steel (SS) in the fission product (FP) chemistry database named ECUME was incorporated into the severe accident (SA) analysis code SAMPSON for the more accurate estimation of Cs distribution within nuclear reactor vessels in the TEPCO's Fukushima Daiichi Nuclear Power Station (1F). The SAMPSON with the improved model was verified based on the analysis results reproducing the experimental results which were subjected to the modeling of Cs chemisorption behavior. Then, the experiment in the facility with the temperature gradient tube to simulate SA conditions such as temperature decrease and aerosol formation was analyzed to confirm availability of the improved model to the analysis of Cs chemisorption onto SS. The SAMPSON with the improved model successfully reproduced the experimental results, which indicates that the improved model and the analytical method such as setting a method of node-junction, models of aerosol formation and the calculation method of saturated CsOH vapor pressure can be applicable to the analysis of Cs chemisorption behavior. As the information on water-solubility of Cs deposits was also prerequisite to estimate the Cs distribution in the 1F because Cs can be transported through aqueous phase after the SA, the water-solubility of chemisorbed Cs compounds was investigated. The chemisorbed compounds on SS304 have been identified to CsFeO$$_{2}$$ at 873 K to 973 K with higher water-solubility, CsFeSiO$$_{4}$$ at 973 K to 1273 K and Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$ at 1073 K to 1273 K with lower water-solubility. From these results, the water-solubility of chemisorbed Cs compounds can be estimated according to the SA analysis conditions such as temperature in the reactor and the CsOH concentration affecting the amount of chemisorbed Cs.

JAEA Reports

Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with Multi-physics modeling (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Waseda University*

JAEA-Review 2021-034, 107 Pages, 2021/12

JAEA-Review-2021-034.pdf:6.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with multi-physics modeling" conducted in FY2020. Continuous update on understanding of the damaged 1F reactors is important for safe and efficient decommissioning of the reactors. This study aims to estimate the in-depth debris status of the damaged 1F Unit-2 and Unit-3 through multi-physics modeling, which comprises of MPS method, simulated molten debris relocation experiment and high-temperature melt property data acquisition in the three-year project from FY2019.

JAEA Reports

Estimation of the in-depth debris status of Fukushima Unit-2 and Unit-3 with Multi-physics modeling (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Waseda University*

JAEA-Review 2020-035, 102 Pages, 2021/01

JAEA-Review-2020-035.pdf:6.82MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Estimation of the In-Depth Debris Status of Fukushima Unit-2 and Unit-3 with Multi-Physics Modeling". Continuous update on understanding of the damaged Fukushima reactors is important for safe and efficient decommissioning of the reactors. This study aims to estimate the in-depth debris status of the damaged Fukushima Unit-2 and Unit-3 through multi-physics modeling, which comprises of MPS method, simulated molten debris relocation experiment and high-temperature melt property data acquision in the three-year project from FY2019.

Journal Articles

Chapter 18, Moving particle semi-implicit method

Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*

Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00

Journal Articles

Consistent robin boundary enforcement of particle method for heat transfer problem with arbitrary geometry

Wang, Z.; Duan, G.*; Matsunaga, Takuya*; Sugiyama, Tomoyuki

International Journal of Heat and Mass Transfer, 157, p.119919_1 - 119919_20, 2020/08

 Times Cited Count:16 Percentile:77.06(Thermodynamics)

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool; Confirmation of fuel temperature calculation function with oxidation reaction in the SAMPSON code

Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00450_1 - 19-00450_17, 2020/06

In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Air oxidation models based on oxidation data obtained on the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents. The rapid fuel rod temperature rise due to the Zr air oxidation reaction could be reasonably evaluated by the SAMPSON analysis. The SFP accident analyses were conducted with different initial water levels which were no water, water level at bottom of active fuel, and water level at half of active fuel. The present analysis showed that the earliest temperature rise of the fuel rod surface occurred when there was no water in the SFP and natural circulation of air became possible.

Journal Articles

Development of a control system at a 3 MeV linac in J-PARC

Sawabe, Yuki*; Ishiyama, Tatsuya; Takahashi, Daisuke; Kato, Yuko; Suzuki, Takahiro*; Hirano, Koichiro; Takei, Hayanori; Meigo, Shinichiro; Kikuzawa, Nobuhiro; Hayashi, Naoki

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.647 - 651, 2016/11

In the J-PARC, a 3 MeV linac has been developed for the tests of beam scraper irradiation and charge exchange by high-power laser. To accomplish tests efficiently and safely, the control system for 3 MeV was designed and developed, and this system consists of four subsystems, personal protection system, machine protection system, timing system, and remote control system using the EPICS. In this paper, the details of control system for a 3 MeV linac are presented.

Journal Articles

Development status of data acquisition system for IFMIF/EVEDA accelerator

Usami, Hiroki; Takahashi, Hiroki; Komukai, Satoshi*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.760 - 763, 2015/09

EU and JAEA are advancing development of Linear IFMIF Prototype Accelerator (LIPAc) control system jointly, but JAEA keeps developing central control system (CCS) mainly. Data transfer during an equipment control system of CCS and EU is performed through EPICS. JAEA is using PostgreSQL as 1 of development elements in CCS and is advancing development of the system to record the whole EPICS data of LIPAc (the data acquisition system). On the other hand, a data acquisition is performed using BEAUTY (Best Ever Archive Toolset, yet) in an element test of equipment at Europe. Therefore "1 client refers to collected data by more than one server machine" with "compatibility securement of data with BEAUTY" in case of development of the data acquisition system of CCS, and, it's necessary to consider "To do a data acquisition and backup work at the same time". For the moment, former 2 are in progress. And a demonstration of the data acquisition system is being performed simultaneously with commissioning in injector. The data acquisition system is collecting data of injector other ones, and the data reference by a monitor with CSS (Control System Studio) is also possible. We will report on the current state of the development of the data acquisition system by making reference to a result of the test by injector commissioning.

Journal Articles

Evaluation of the 3-Gev proton beam profile at the spallation target of the JSNS

Meigo, Shinichiro; Noda, Fumiaki*; Ishikura, Shuichi*; Futakawa, Masatoshi; Sakamoto, Shinichi; Ikeda, Yujiro

Nuclear Instruments and Methods in Physics Research A, 562(2), p.569 - 572, 2006/06

 Times Cited Count:19 Percentile:77.5(Instruments & Instrumentation)

no abstracts in English

Journal Articles

SCDAP/RELAP5 analysis of station blackout with pump seal LOCA in Surry plant

Hidaka, Akihide; Soda, Kunihisa; Sugimoto, Jun

Journal of Nuclear Science and Technology, 32(6), p.527 - 538, 1995/06

 Times Cited Count:3 Percentile:36.75(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Literature Review; Si$$cdot$$Al distribution in 2:1 layered silicates; Study by NMR

Sato, Tsutomu

SMECTITE, 4(2), p.43 - 45, 1994/00

no abstracts in English

JAEA Reports

Numerical evaluation of general n-dimensional integrals by the repeated use of Newton-Cotes formulas

Nihira, Takeshi*; Iwata, Tadao

JAERI-M 92-099, 28 Pages, 1992/07

JAERI-M-92-099.pdf:0.64MB

no abstracts in English

Journal Articles

Development of turbo-viscous pump with ceramic rotor assembly and oil-free driving unit

Murakami, Yoshio; Abe, Tetsuya; *; *

J. Vac. Sci. Technol., A, 9(3), p.2053 - 2057, 1991/05

no abstracts in English

Journal Articles

Rotational test of ceramic reactor for vacuum pump

Abe, Tetsuya; Murakami, Yoshio; Takazawa, Kunio*; *

Shinku, 31(5), p.334 - 337, 1988/00

no abstracts in English

Journal Articles

Performance test of a ceramic rotor developed for turbo-molecular pumps for fusion use

Murakami, Yoshio; Abe, Tetsuya; Morii, Shigeki*; Nakaishi, N.*; Hata, S.*

J.Vac.Sci.Technol.,A, 5(4), p.2599 - 2602, 1987/04

no abstracts in English

JAEA Reports

Heat Loss and Fluid Leakage Tests of the ROSA-III Facility

; Tasaka, Kanji;

JAERI-M 9834, 42 Pages, 1981/12

JAERI-M-9834.pdf:0.92MB

no abstracts in English

JAEA Reports

IAEA INTOR Workshop Report, Group 14; Vacuum

Murakami, Yoshio; ; ; *

JAERI-M 8513, 40 Pages, 1979/10

JAERI-M-8513.pdf:1.06MB

no abstracts in English

JAEA Reports

Oral presentation

FPGA utilization of the accelerator interlock system through MPS development in LIPAc

Nishiyama, Koichi; Takahashi, Hiroki; Sakaki, Hironao; Narita, Takahiro; Kojima, Toshiyuki*; Knaster, J.*; Marqueta, A.*

no journal, , 

The development of IFMIF(International Fusion Material Irradiation Facility) to generate a 14 MeV source of neutrons with the spectrum of DT fusion reactions is indispensable to qualify suitable materials for the First Wall of the nuclear vessel in fusion power plants. As part of IFMIF validation activities, LIPAc (Linear IFMIF Prototype Accelerator) facility, currently under installation at Rokkasho (Japan), will accelerate a 125 mA CW and 9 MeV deuteron beam with a total beam power of 1.125 MW. The Machine Protection System (MPS) of LIPAc provides an essential interlock function of stopping the beam in case of anomalous beam loss or other hazardous situations. High speed processing is necessary to achieve properly the MPS main goal. This high speed processing of the signals, distributed alongside the accelerator facility, is based on FPGA (Field Programmable Gate Array) technology. This paper describes the basis of FPGA use in the accelerator interlock system through the development of LIPAc.

39 (Records 1-20 displayed on this page)